ORIGINAL ARTICLE

Yasuhiko Kano · Miyuki Akutsu · Saburo Tsunoda Tohru Izumi · Kiyoshi Mori · Hirofumi Fujii Yasuo Yazawa · Hiroyuki Mano · Yusuke Furukawa

Schedule-dependent synergism and antagonism between pemetrexed and paclitaxel in human carcinoma cell lines in vitro

Received: 4 August 2003 / Accepted: 24 March 2004 / Published online: 31 August 2004 © Springer-Verlag 2004

Abstract Pemetrexed is a novel multitargeted antifolate with significant clinical activity against a variety of tumors. We studied the schedule-dependent cytotoxic effects of pemetrexed in combination with paclitaxel in vitro to improve our understanding of how this combination might be used clinically. Human lung cancer A549 cells, breast cancer MCF7, ovarian cancer PA1, and colon cancer WiDr cells were exposed to both pemetrexed and paclitaxel in vitro. Cell growth inhibition after 5 days was determined and the effects of drug combinations were analyzed by the isobologram method (Steel and Peckham). Simultaneous exposure to pemetrexed and paclitaxel for 24 h produced antagonistic effects in A549 and PA1 cells, additive/antagonistic effects in MCF7 cells, and additive effects in WiDr cells. Pemetrexed for 24 h followed by paclitaxel for 24 h produced synergistic effects in A549 and MCF7 cells and additive effects in PA1 and WiDr cells, while the reverse sequence produced additive effects in all four cell lines. Cell cycle analysis supported these observations. Our findings suggest that the simultaneous administration of pemetrexed and paclitaxel is suboptimal. The optimal schedule of pemetrexed in combination with paclitaxel is the sequential administration of pemetrexed followed by paclitaxel, and this schedule should be assessed in clinical trials for the treatment of solid tumors.

Y. Kano (⋈) · M. Akutsu · S. Tsunoda · T. Izumi Division of Hematology, Tochigi Cancer Center, Yonan, Utsunomiya, Tochigi, 320-0834, Japan E-mail: ykano@tcc.pref.tochigi.jp

Tel.: +81-28-6585151 Fax: +81-28-6585488

K. Mori · H. Fujii

Division of Medical Oncology, Tochigi Cancer Center, Utsunomiya, Tochigi, Japan

Y. Yazawa

Division of Orthopedic Oncology, Tochigi Cancer Center, Utsunomiya, Tochigi, Japan

H. Mano · Y. Furukawa Center for Molecular Medicine, Department of Hematology, Jichi Medical School, Minamikawachi, Tochigi, Japan **Keywords** Pemetrexed · Paclitaxel · Isobologram · Synergism · Antagonism

Introduction

The development of several new antifolates with distinctive chemical features and target enzymes has provided new opportunities to expand the role of antifolates in cancer chemotherapy. Multitargeted antifolate (MTA, pemetrexed) is a pyrrole-pyrimidine analogue of folate [33] currently in broad clinical evaluation. Pemetrexed is transported into cells mainly through the reduced folate carrier system and metabolized to polyglutamated forms [7] which inhibit thymidylate synthase, dihydrofolate reductase, and glycinamide ribonucleotide formyl transferase [30, 31], and has antithymidylate and antipurine effects [5]. Preclinical studies of pemetrexed have demonstrated its antitumor activity against a variety of human cancer cells [2, 29].

Phase I studies have shown that the dose-limiting toxicity includes neutropenia and thrombocytopenia, and other toxicities which are manageable, such as mucositis, skin rashes and transient elevations of transaminases [18, 23-25]. Daily and weekly schedules are associated with severe toxicity and 500 mg/m² of pemetrexed every 3 weeks was selected as the optimal schedule and dose for the further development of pemetrexed. Patients with a folate-deficient state showed severe toxicity. In preclinical models, folate supplementation reduced toxicity while maintaining antitumor activity. Based on these observations, folate and cobalamin administration before pemetrexed has been routine in recent clinical trials of pemetrexed [9, 26]. Pharmacokinetic studies have shown that pemetrexed undergoes biphasic plasma clearance with a terminal half-life of 1.1-3.1 h, depending on the schedule of administration [23]. The findings from the phase II trial results are encouraging: clear responses were observed in colorectal cancer, pancreatic cancer, lung cancer, breast cancer, mesothelioma, etc. [3, 4, 8, 10, 19-21, 26, 37]. A recent

phase III study has shown that treatment with pemetrexed and cisplatin results in survival times superior to those achieved with cisplatin alone in patients with malignant pleural mesothelioma [39].

Paclitaxel is an established anticancer agent with activity against a variety of solid tumors [1, 6]. Paclitaxel is a mitotic inhibitor that promotes the polymerization and stabilization of tubulin to microtubules [27]. Clinical studies have indicated that neutropenia is the dose-limiting toxicity of paclitaxel [1, 6]. Other toxicities include hypersensitivity reactions, neurotoxicity, mucositis, mild nausea and vomiting, and cardiac injury.

The combination of pemetrexed and paclitaxel may have a major role in the treatment of a variety of solid tumors. The wide range of antitumor activity of pemetrexed and paclitaxel, their different cytotoxic mechanisms and toxic profiles, and the absence of cross-resistance, provide the rationale for using combinations of these agents. Since pemetrexed and paclitaxel are cell cyclespecific agents [17, 38], the disturbances of the cell cycle produced by these agents may influence the cytotoxic effects of each agent, and the drug schedule may play a significant role in the outcome. Therefore, the design of a protocol using them in combination requires careful consideration. As expected, experimental studies for the combination of pemetrexed [22, 30, 36] or paclitaxel [13– 15] with other agents have shown schedule-dependent interactions.

The aim of the present study was to elucidate the cytotoxic effects of combinations of pemetrexed and paclitaxel in various schedules on four human carcinoma cell lines. The data obtained were analyzed using the isobologram method of Steel and Peckham [32]. The combination showed schedule-dependent synergism and antagonism.

Materials and methods

Cell lines

Experiments were conducted with the human lung cancer A549, breast cancer MCF7, ovarian cancer PA1, and colon cancer WiDr cell lines. These cells were obtained from the American Type Culture Collection (Rockville, Md.) and maintained in 75-cm² plastic tissue culture flasks containing RPMI-1640 medium (Sigma Chemical Co., St Louis, Mo.) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Grand Island Biological Co.) and antibiotics. The cells used were devoid of mycoplasma infection. The doubling times of A549, MCF7, PA1, and WiDr cells under our experimental conditions were in the range 20–24 h.

Drugs

Pemetrexed was kindly provided by Eli Lilly and Company (Indianapolis, Ind.). Paclitaxel was purchased from

Bristol-Myers Squibb Japan Co. (Tokyo). The drugs, at a concentration of 1 mM, were stored at -20°C and diluted with RPMI-1640 plus 10% FBS prior to use.

Cell growth inhibition using combined anticancer agents

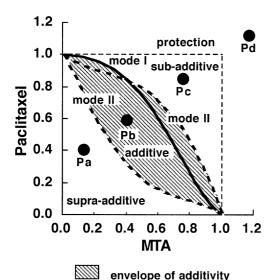
On day 0, cells growing in the exponential phase were harvested with 0.05% trypsin and 0.02% EDTA and resuspended to a final concentration of 5.0×10^3 cells/ml in fresh medium containing 10% FBS and antibiotics. Cell suspensions (100 µl) were dispensed into the individual wells of a 96-well tissue culture plate (Falcon, Oxnard, Calif.). Each plate had one eight-well control column containing medium alone and one eight-well control column containing cells without drug. Eight plates were prepared for each drug combination. The cells were preincubated overnight to allow attachment.

Simultaneous exposure to pemetrexed and paclitaxel

After the overnight incubation for cell attachment, solutions of pemetrexed and paclitaxel (50 µl) at different concentrations were added to the individual wells. The plates were also incubated under the same conditions for 24 h. The cells were then washed twice with culture medium containing 1% FBS, and then fresh medium containing 10% FBS (200 µl) and antibiotics was added. The cells were incubated again for 4 days.

Sequential exposure to pemetrexed followed by paclitaxel or the reverse sequence

After overnight incubation, medium containing 10% FBS ($50~\mu$ l) and solutions ($50~\mu$ l) of pemetrexed (or paclitaxel) at different concentrations was added to individual wells. The plates were then incubated under the same conditions for 24 h. The cells were washed twice with culture medium containing 1% FBS; then fresh medium containing 10% FBS ($150~\mu$ l) and antibiotics was added, followed by the addition of solutions ($50~\mu$ l) of paclitaxel (or pemetrexed) at different concentrations. The plates were incubated again under the same conditions for 24 h. The cells were then washed twice with culture medium, and fresh medium containing 10% FBS ($200~\mu$ l) and antibiotics was added. The cells were then incubated again for 3 days.


MTT assay

Viable cell growth was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as described previously [12]. For all four cell lines examined, we were able to establish a linear relationship between the MTT assay value and the cell number within the range shown.

Isobologram

The dose-response interactions between pemetrexed and paclitaxel for the MCF7, PA1 and WiDr cells were evaluated at the IC_{80} level by the isobologram method (Fig. 1) [32]. The IC_{80} was defined as the concentration of drug that produced 80% cell growth inhibition, i.e., an 80% reduction of absorbance. Since the A549 cells were resistant to pemetrexed and the IC_{80} level was not obtained, the interactions between pemetrexed and paclitaxel were evaluated at the IC_{50} level. We used the isobologram method of Steel and Peckham because this method can cope with any agents with unclear cytotoxic mechanisms and a variety of dose-response curves of anticancer agents [32]. The concept of the isobologram has been described in detail previously [11, 16].

Three isoeffect curves, mode I and mode II, were constructed, based upon the dose-response curves of pemetrexed and paclitaxel (Fig. 1). Mode I and mode II were generated by the assumption regarding overlap and non-overlap damage in combinations, respectively. Thus, when the data points of the drug combination fell within the area surrounded by mode I and/or mode II lines (i.e., within the envelope of additivity), the combination was described as additive. We used this envelope not only to evaluate the simultaneous exposure combinations of pemetrexed and paclitaxel, but also to evaluate the sequential exposure combinations, since the

Fig. 1 Schematic representation of an isobologram (Steel and Peckham) [32]. The envelope of additivity, surrounded by mode I (*solid line*) and mode II (*dotted lines*) isobologram lines, was constructed from the dose-response curves of MTA and paclitaxel. The concentrations which produced 80% cell growth inhibition are shown as 1.0 on the ordinate and the abscissa of all isobolograms for MCF7, PA1, and WiDr cells, while the concentrations which produced 50% cell growth inhibition are shown as 1.0 on the ordinate and the abscissa of all isobolograms for A549 cells. Combined data points Pa, Pb, Pc, and Pd show supraadditive, additive, subadditive, and protective effects, respectively

second agent under our experimental conditions could modulate the cytotoxicity of the first agent.

A combination that gives data points to the left of the envelope of additivity (i.e., the combined effect is caused by lower doses of the two agents than is predicted) can confidently be described as supraadditive (synergistic). A combination that gives data points to the right of the envelope of additivity, but within the square or on the line of the square can be described as subadditive (i.e., the combination is superior or equal to a single agent but is less than additive). A combination that gives data points outside the square can be described as protective (i.e., the combination is inferior in cytotoxic action to a single agent). A combination with both subadditive and/ or protective interactions can confidently be described as antagonistic. The Steel and Peckham isobologram is generally more strict regarding synergism and antagonism than other methods.

Data analysis

The findings were analyzed as described previously [14]. When the observed data points of the combinations mainly fell in the area of supraadditivity or in the areas of subadditivity and protection, i.e., the mean value of the observed data was smaller than that of the predicted minimum values or larger than that of the predicted maximum values, the combinations were considered to have a synergistic or antagonistic effect, respectively. To determine whether the condition of synergism (or antagonism) truly existed, a statistical analysis was performed. The Wilcoxon signed-ranks test was used for comparing the observed data with the predicted minimum (or maximum) values for additive effects, which were closest to the observed data (i.e., the data on the boundary (mode I or mode II lines) between the additive area and supraadditive area (or subadditive and protective areas). Probability (P) values < 0.05 were considered significant. Combinations with $P \ge 0.05$ were regarded as indicating additive to synergistic (or additive to antagonistic) effects. All statistical analyses were performed using the Stat View 4.01 software program (Abacus Concepts, Berkeley, Calif.).

Results

The IC₈₀ values of pemetrexed for a 24-h exposure against MCF7, PA1, and WiDr cells were 3.3 ± 0.4 , 0.15 ± 0.02 , and 0.45 ± 0.04 μM , respectively, while those of paclitaxel against MCF7, PA1, and WiDr cells were 5.9 ± 0.4 , 2.5 ± 0.06 , and 5.8 ± 0.06 nM, respectively. The IC₅₀ values of pemetrexed and paclitaxel for a 24-h exposure against A549 cells were 2.5 ± 0.3 μM and 3.4 ± 0.3 nM, respectively.

Figure 2 shows the dose-response curves obtained from simultaneous exposure and sequential exposure to pemetrexed and paclitaxel for the MCF7 cells. The

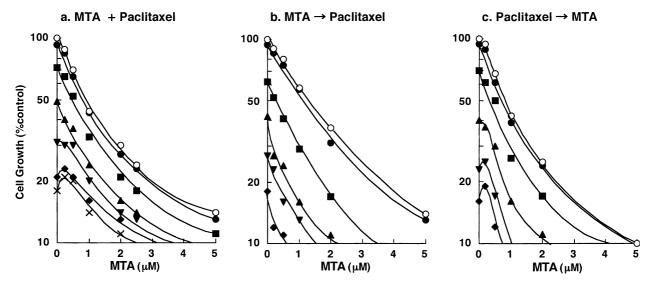


Fig. 2 Schedule dependence of the interaction between MTA and paclitaxel in MCF7 cells. Cells were exposed to (a) these two drugs simultaneously for 24 h, (b) MTA first for 24 h followed by paclitaxel for 24 h, or (c) the reverse sequence. The cell number after 5 days was measured using the MTT assay and was plotted as a percentage of the control (cells not exposed to drugs). The concentrations of MTA are shown on the abscissa. The concentrations of paclitaxel were 0 (open circles), 1 (filled circles), 2 (filled squares), 3 (filled uptriangles), 4 (filled downtriangles), 6 (filled diamonds), and 8 (crosses) nM, respectively. Data are the mean values for three independent experiments; SE was < 20%

dose-response curves were plotted on a semilog scale as a percentage of the control, the cell number of which was obtained from the samples not exposed to the drugs administered simultaneously. The pemetrexed concentrations are shown on the abscissa. Dose-response curves in which paclitaxel concentrations are shown on the abscissa could be made based on the same data (figure not shown).

Based upon the dose-response curves of pemetrexed alone and paclitaxel alone, three isoeffect curves (mode I and mode II lines) were constructed. Isobolograms at the $\rm IC_{80}$ and $\rm IC_{50}$ levels were generated based upon these dose-response curves for the combinations.

Simultaneous exposure to pemetrexed and paclitaxel for 24 h

Figure 3 shows the isobolograms of the A549, MCF7, PA1, and WiDr cells exposed to both agents simultaneously. For the A549 and PA1 cells, all or most combined data points fell in the areas of subadditivity and protection (Fig. 3a,c). The mean values of the data were larger than those of the predicted maximum data (Table 1). The differences were significant (P < 0.05 and P < 0.05), indicating antagonistic effects. For the MCF7 cells, the combined data points fell within the envelope of additivity and in the areas of subadditivity and protection (Fig. 3b; Table 1). The mean value of the data was larger than that of the predicted maximum data. The difference was not significant ($P \ge 0.05$), indicating

additive/antagonistic effects. For the WiDr cells, the combined data points fell mainly within the envelope of additivity (Fig. 3d). The mean value of the data was larger than that of the predicted minimum data and smaller than that of the predicted maximum data (Table 1), indicating additive effects. A quite similar tendency was observed in the IC_{50} isobologram of the MCF7, PA1, and WiDr cells (not shown).

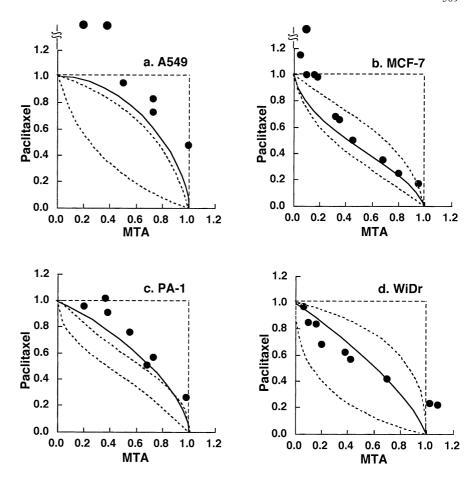

Sequential exposure to pemetrexed for 24 h followed by paclitaxel for 24 h

Figure 4 shows the isobolograms of the four cell lines exposed first to pemetrexed and then to paclitaxel. For the A549 and MCF7 cells, the combined data points fell in the area of supraadditivity and within the envelope of additivity (Fig. 4a,b). The mean values of the data were smaller than those of the predicted minimum data (Table 1). The differences were significant (P < 0.05 and P < 0.05), indicating synergistic effects. For the PA1 cells, the combined data points fell within the envelope of additivity (Fig. 4c), indicating additive effects (Table 1). For the WiDr cells, the combined data points fell within the envelope of additivity and in the area of supraadditivity (Fig. 4d). The mean value of the data was smaller than that of the predicted maximum data and larger than that of the predicted minimum data (Table 1), indicating additive effects. A quite similar tendency was observed in the IC₅₀ isobologram of the MCF7, PA1, and WiDr cells (not shown).

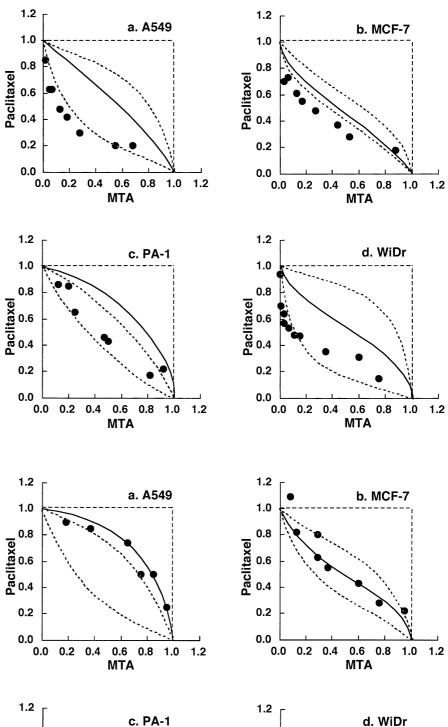
Sequential exposure to paclitaxel for 24 h followed by pemetrexed for 24 h

Figure 5 shows the isobolograms of cells exposed first to paclitaxel and then to pemetrexed. For all four cell lines, all or most of the data points fell within the envelope of additivity, indicating additive effects (Table 1). A quite

Fig. 3 Isobolograms of simultaneous exposure to MTA and paclitaxel for 24 h in (a) A549, (b) MCF7, (c) PA1, and (d) WiDr cells. For the A549, and PA1 cells, all or most combined data points fell in the areas of subadditivity and protection. For the MCF7 cells, combined data points fell within the envelope of additivity and in the areas of subadditivity and protection. For the WiDr cells, combined data points fell mainly within the envelope of additivity. Data are the mean values for at least three independent experiments; SE was < 30%

similar tendency was observed in the IC₅₀ isobologram of the MCF7, PA1, and WiDr cells.

Discussion


We studied the cytotoxic activity of various schedules of pemetrexed in combination with paclitaxel in culture to investigate the optimal schedule of this combination. The analysis of the effects of drug-drug interaction was carried out using the isobologram method of Steel and Peckham [32]. Among the solid tumor cell lines studied, PA1 was most sensitive to pemetrexed, while A549 was most resistant to pemetrexed. The pemetrexed concentrations required for IC_{80} and/or IC_{50} were well within the range that can be attained in human plasma using standard dosing regimens [23].

We demonstrated that cytotoxic interactions between pemetrexed and paclitaxel were schedule-dependent and cell line-dependent. Simultaneous exposure to pemetrexed and paclitaxel showed antagonistic effects in A549 and PA1 cells, additive/antagonistic effects in MCF7

Table 1 Mean values of observed data, predicted minimum, and predicted maximum values of MTA in combination with paclitaxel at IC₈₀ for MCF7, PA1 and WiDr cells and at IC₅₀ for A549 cells

Schedule	Cell line	n	Observed data	Predicted data for an additive effect		Effect
				Minimum	Maximum	
MTA + paclitaxel	A549	6	> 0.92	0.22	0.69	Antagonism $(P < 0.05)$
	MCF7	11	0.61	0.42	0.52	Additive/antagonism
	PA1	7	0.71	0.33	0.60	Antagonism ($P < 0.05$)
	WiDr	9	0.61	0.29	0.78	Additive
$MTA \rightarrow paclitaxel$	A549	8	0.31	0.36	0.80	Synergism $(P < 0.05)$
	MCF7	8	0.45	0.60	0.66	Synergism $(P < 0.05)$
	PA1	7	0.41	0.32	0.70	Additive
	WiDr	10	0.34	0.33	0.83	Additive
Paclitaxel → MTA	A549	6	0.78	0.31	0.82	Additive
	MCF7	8	0.58	0.44	0.66	Additive
	PA1	6	0.55	0.44	0.67	Additive
	WiDr	9	0.64	0.25	0.93	Additive

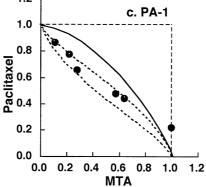
Fig. 4 Isobolograms of sequential exposure to MTA (24 h) followed by paclitaxel (24 h) in (a) A549, (b) MCF7, (c) PA1, and (d) WiDr cells. For the A549 and MCF7 cells, most data points of the combinations fell in the area of supraadditivity. For the PA1 cells, all the data points fell within the envelope of additivity. For the WiDr cells, the data points fell within the envelope of additivity and in the area of supraadditivity. Data are the mean values for at least three independent experiments; SE was < 20%

1.0

8.0

0.2

0.0


0.0 0.2 0.4

0.6 0.8 1.0 1.2

MTA

Paclitaxel 9.0 8.0

Fig. 5 Isobolograms of sequential exposure to paclitaxel (24 h) followed by MTA (24 h) in (a) A549, (b) MCF7, (c) PA1, and (d) WiDr cells. For all four cells, all or most data points of the combinations fell within the envelope of additivity. Data are the mean values for at least three independent experiments; SE was <25%

cells and additive effects in WiDr cells. Sequential exposure to pemetrexed for 24 h followed by paclitaxel showed synergistic effects in A549 and MCF7 cells and additive effects in PA1 and WiDr cells. However, the combined data points in PA1 and WiDr cells were close to the borderlines between supraadditive and additive areas (Fig. 4), and the observed data were close to the predicted minimum values for an additive effect (Table 1). The combined data points in WiDr cells fell both in the area of supraadditivity and within the envelope of additivity (Fig. 4). Since the isobologram of Steel and Peckham is more strict for synergism and antagonism than other methods for evaluating the effects of drug combinations, simultaneous exposure to pemetrexed and paclitaxel and sequential exposure to pemetrexed followed by paclitaxel would be defined as having antagonistic and synergistic effects, respectively, using other

On the other hand, sequential exposure to paclitaxel followed by pemetrexed showed additive effects in all four cell lines tested. The results of flow cytometric analysis of PA1 cells were consistent with these findings. Enhanced apoptosis was observed only in the pemetrexed–paclitaxel sequence (data not shown).

Our findings suggest that the simultaneous administration of pemetrexed and paclitaxel on the same day is convenient for clinical use but is suboptimal. The sequential administration of pemetrexed followed by paclitaxel may be the optimal schedule for these combinations. For example, administrations of pemetrexed on day 1 and paclitaxel on day 2 would be worthy of clinical investigation. Several in vitro and in vivo studies of combinations of pemetrexed with paclitaxel have been reported [28, 34, 35]. Schultz et al. observed synergistic effects when pemetrexed exposure preceded paclitaxel exposure by 24 h, while the reverse order produced only additive effects in three human cancer cells in vitro [28]. Although the detailed experimental systems are not described in the abstract, our data support their findings.

Teicher et al. studied the combination of pemetrexed and paclitaxel in vivo against EMT-6 murine mammary carcinoma using a tumor cell survival assay [34]. They observed that pemetrexed administered four times over 48 h with paclitaxel administered with the third dose of pemetrexed produced an additive or more than additive tumor response. They further studied the combination of pemetrexed and paclitaxel in human tumor xenografts Administration of pemetrexed (days 7–11, days 14-18) along with paclitaxel (days 8, 10, 12, and 15) produced greater-than-additive effects on human lung cancer H460 tumor growth delay, while that of pemetrexed (days 7–11) along with paclitaxel (days 7, 9, 11, and 13) produced additive effects on human breast cancer MX-1 tumor growth delay. Since the schedules of administration of pemetrexed with paclitaxel were quite different from ours, comparison seems difficult.

The mechanisms underlying the schedule-dependent synergism and antagonism of the combination of pemetrexed and paclitaxel are unclear. Cell cycle

analysis showed that initially exposing cells to pemetrexed leads to synchronization in the S phase (data not shown). Cells in the S phase are sensitive to paclitaxel, in addition to cells in G₂/M phase [17]. This may explain the synergistic effects of sequential exposure to pemetrexed followed by paclitaxel. Simultaneous exposure to pemetrexed and paclitaxel produced antagonistic effects. Pemetrexed has a cytotoxic effect by blocking cells in the S phase [38], while paclitaxel has cytotoxic effects by blocking cells in the G₂/M phase [17, 27]. Thus, one agent might reduce the cytotoxicity of the other agent by preventing cells from entering the specific phase in which the cells are most cytotoxic to the other agent. Interestingly, we have observed similar cytotoxic interactions between methotrexate and paclitaxel [15]. Simultaneous exposure to methotrexate and paclitaxel produces antagonistic effects, while the methotrexate/paclitaxel sequence produces synergistic effects and the reverse sequence produces additive effects. These experimental data suggest that antifolates, which inhibit dihydrofolate reductase, may enhance the cytotoxic action of paclitaxel in sequential administration.

It should be noted that in vitro studies cannot evaluate toxic and pharmacokinetic interactions. Thus, in vivo studies are required to confirm whether the pemetrexed-paclitaxel sequence is optimal or not. In clinical oncology, drug interaction may result in synergism, not only in terms of efficacy but also in terms of toxic side effects. If the toxicities of the drug combinations were compared between the schedules of synergistic and antagonistic interactions at the same doses, the schedules with antagonistic interactions may produce less toxicity than the schedules with synergistic interactions. Our data showed that the drug doses required for IC₈₀ or IC₅₀ levels with sequential exposure to pemetrexed followed by paclitaxel are less than 70% of the drug doses required for IC₈₀ or IC₅₀ with simultaneous exposure to the two agents (Figs. 3 and 4). This suggests that the optimal doses for sequential administration of pemetrexed followed by paclitaxel may be lower than those for the simultaneous administration of the two agents. This is important and must be kept in mind for translating in vitro data to clinical applications, since the schedule showing antagonistic effects of the combination may be selected because of less toxicity during the first stage of clinical study.

In conclusion, our findings suggest that the cytotoxic effects of the combination of pemetrexed and paclitaxel are schedule-dependent. The optimal schedule of pemetrexed in combination with paclitaxel is the sequential administration of pemetrexed followed by paclitaxel. Although there are a number of difficulties in the translation of results from in vitro to clinical therapy, this schedule should be assessed in clinical trials for the treatment of solid tumors.

Acknowledgments This work was supported in part by a Grant-in-Aid for Cancer Research (11-8) from the Ministry of Health and Welfare and by a Grant-in-Aid for Research on the Second-Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health and Welfare of Japan.

References

- Arbuck SG (1995) Paclitaxel: current developmental approaches of the National Cancer Institute. Semin Oncol 22:55

 56
- Britten CD, Izbicka E, Hilsenbeck S, Lawrence R, Davidson K, Cerna C, Gomez L, Rowinsky EK, Weitman S, Van Hoff DD (1999) Activity of the multitargeted antifolate MTA in the human tumor cloning assay. Cancer Chemother Pharmacol 44:105–110
- Calvert AH, Walling JM (1998) Clinical studies with MTA. Br J Cancer 78 [Suppl 3]:35–40
- Celio L, Buzzoni R, Longarini R, Marchiano A, Bajetta E (2002) Pemetrexed in gastric cancer: clinical experience and future perspectives. Semin Oncol 29 [Suppl 18]:63–68
- Chen VJ, Bewley JR, Smith PG, Andis SL, Schultz RM, I-versen PW, Tonkinson JL, Shih C (2000) An assessment of the antithymine and antipurine characteristics of MTA (LY231514) in CCRF-CEM cells. Adv Enzyme Regul 40:143–154
- 6. Donehower RC, Rowinsky EK (1993) An overview of experience with taxol (paclitaxel) in the USA. Cancer Treat Rev 19 [Suppl C]:63–78
- Habeck LL, Mendelsohn LG, Shih C, Taylor EC, Colman PD, Gossett LS, Leitner TA, Schultz RM, Andis SL, Moran RG (1995) Substrate specificity of mammalian folypolyglutamate synthetase for 5,10-dideazatetrahydrofolate analogs. Mol Pharmacol 48:326–333
- 8. Haller DG (2002) Future directions in the treatment of pancreatic cancer. Semin Oncol 29 [Suppl 20]:31–39
- Hanauske AR, Chen V, Paoletti P, Niyikiza C (2001) Pemetrexed disodium: a novel antifolate clinically active against multiple solid tumors. Oncologist 6:363–373
- 10. Hochster H (2002) The role of pemetrexed in the treatment of colorectal cancer. Semin Oncol 29 [6 Suppl 18]:54-5611. Kano Y, Ohnuma T, Okano T, Holland JF (1988) Effects of
- Kano Y, Ohnuma T, Okano T, Holland JF (1988) Effects of vincristine in combination with methotrexate and other antitumor agents in human acute lymphoblastic leukemia cells in culture. Cancer Res 48:351–356
- 12. Kano Y, Sakamoto S, Kasahara T, Akutsu M, Inoue Y, Miura Y (1991) In vitro effects of amsacrine in combination with other anticancer agents. Leuk Res 15:1059–1064
- Kano Y, Akutsu M, Tsunoda S, Ando J, Matsui J, Suzuki K, Ikeda T, Inoue Y, Adachi K (1996) Schedule-dependent interaction between paclitaxel and 5-fluorouracil in human carcinoma cell lines in vitro. Br J Cancer 74:704–710
- 14. Kano Y, Akutsu M, Tsunoda S, Suzuki K, Adachi K (1998) In vitro schedule-dependent interaction between paclitaxel and SN-38 (the active metabolite of irinotecan) in human carcinoma cell lines. Cancer Chemother Pharmacol 42:91–98
- Kano Y, Akutsu M, Tsunoda S, Furuta M, Yazawa Y, Ando J (1998) Schedule-dependent synergism and antagonism between paclitaxel and methotrexate in human carcinoma cell lines. Oncol Res 10:347–354
- Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y, Furukawa Y (2001) In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 97:1999–2007
- 17. Lieu CH, Chang YN, Lai YK (1997) Dual cytotoxic mechanisms of submicromolar taxol on human leukemia HL-60 cells. Biochem Pharmacol 53:1587–1596
- 18. McDonald AC, Vasey PA, Adams L, Walling J, Woodworth JR, Abrahams T, McCarthy S, Bailey NP, Siddiqui N, Lind MJ, Calvert AH, Twelves CJ, Cassidy J, Kaye SB (1998) A phase I and pharmacokinetic study of LY231514, the multitargeted antifolate. Clin Cancer Res 4:605–610

- O'Shaughnessy JA, Gennari A, Conte P (2002) Pemetrexed: a promising new treatment for breast cancer. Semin Oncol 29 [2 Suppl 5]:36–41
- Paz-Ares L, Ciruelos E, Garcia-Carbonero R, Castellano D, Lopez-Martin A, Cortes-Funes H (2002) Pemetrexed in bladder, head and neck, and cervical cancers. Semin Oncol 29 [Suppl 18]:69–75
- Paz-Ares L, Bezares S, Tabernero JM, Castellanos D, Cortes-Funes H (2003) Review of a promising new agent—pemetrexed disodium. Cancer [Suppl] 97:2056–2063
- Raymond E, Louvet C, Tournigand C, Coudray AM, Faivre S, De Gramont A, Gespach C (2002) Pemetrexed disodium combined with oxaliplatin, SN38, or 5-fluorouracil, based on the quantitation of drug interactions in human HT29 colon cancer cells. Int J Oncol 21:361–367
- Rinaldi DA (1999) Overview of phase I trials of multitargeted antifolate (MTA, LY231514). Semin Oncol 26 [Suppl 6]:82–88
- 24. Rinaldi DA, Burris HA, Dorr FA, Woodworth JR, Kuhn JG, Eckardt JR, Rodriguez G, Corso SW, Fields SM, Langley C, Clark G, Faries D, Lu P, Van Hoff DD (1995) Initial phase I evaluation of the novel thymidylate synthase inhibitor, LY231514, using the modified continual reassessment method for dose escalation. J Clin Oncol 13:2842–2850
- 25. Rinaldi DA, Kuhn JG, Burris HA, Dorr FA, Rodriguez G, Eckhardt SG, Jones S, Woodworth JR, Baker S (1999) A phase I evaluation of multitargeted antifolate (MTA, LY231514), administered every 21 days, utilizing the modified continual reassessment method for dose escalation. Cancer Chemother Pharmacol 44:372–380
- Scagliotti GV, Shin DM, Kindler HL, Vasconcelles MJ, Keppler U, Manegold C, Burris H, Gatzemeier U, Blatter J, Symanowski JT, Rusthoven JJ (2003) Phase II study of pemetrexed with and without folic acid and vitamin B₁₂ as front-line therapy in malignant pleural mesothelioma. J Clin Oncol 21:1556–1561
- 27. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667
- Schultz RM, Dempsey JA, Kraus LA, Schmid SM, Calvete JA, Laws AL (1999) In vitro sequence dependence for the multitargeted antifolate (MTA, LY231514) combined with other anticancer agents. Eur J Cancer 35 [Suppl 4]:S194
- 29. Shih C, Thornton DE (1998) Preclinical pharmacology studies and the clinical development of a novel multitargeted antifolate, MTA (LY231514). In: Jackman AL (ed) Anticancer drug development guide: antifolate drugs in cancer therapy. Humana, Totowa, p 183
- 30. Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, Shackelford KA, Mendelsohn LG, Soose DJ, Patel VF, Andis SL, Bewley JR, Rayl EA, Moroson BA, Beardsley GP, Kohler W, Ratnam M, Schultz RM (1997) LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 57:1116–1123
- Shih C, Habeck LL, Mendelsohn LG, Chen VJ, Schultz RM (1998) Multiple folate enzyme inhibition: mechanism of a novel pyrrolopyrimidine-based antifolate LY231514 (MTA). Adv Enzyme Regul 38:135–152
- Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91
- 33. Taylor EC, Kuhnt D, Shih C, Rinzel SM, Grindey GB, Barredo J, Jannatipour M, Moran RG (1992) A dideazatetrahydrofolate analogue lacking a chiral center at C-6, *N*-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem 35:4450–4454
- Teicher BA, Alvarez E, Liu P, Lu K, Menon K, Dempsey J, Schultz RM (1999) MTA (LY231514) in combination treatment regimens using human tumor xenografts and the EMT-6 murine mammary carcinoma. Semin Oncol 28:55–62
- Teicher BA, Chen V, Shih C, Menon K, Forler PA, Phares VG, Amsrud T (2000) Treatment regimens including the multitargeted antifolate LY231514 in human tumor xenografts. Clin Cancer Res 6:1016–1023

- 36. Tesei A, Ricotti L, De Paola F, Amadori D, Frassineti GL, Zoli W (2002) In vitro schedule-dependent interactions between the multitargeted antifolate LY231514 and gemcitabine in human colon adenocarcinoma cell lines. Clin Cancer Res 8:233–239
- 37. Tomek S, Emri S, Krejcy K, Manegold C (2003) Chemotherapy for malignant pleural mesothelioma: past results and recent developments. Br J Cancer 88:167–174
- 38. Tonkinson JL, Marder P, Andis SL, Schultz RM, Gossett LS, Shih C, Mendelsohn LG (1997) Cell cycle effects of antifolate
- antimetabolites: implications for cytotoxicity and cytostasis. Cancer Chemother Pharmacol 39:521–531
- Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, Gatzemeier U, Boyer M, Emri S, Manegold C, Niyikiza C, Paoletti P (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21:2636–2644